11.14 Reformat and trim trajectory table for each biomarker
<- full_bp_clean %>%
sbp select(f.eid,Systolic_bp_pc,event_dt) %>%
rename(measurement = Systolic_bp_pc) %>%
mutate(biomarker = "sbp")
<- full_bp_clean %>%
dbp select(f.eid,Diastolic_bp_pc,event_dt) %>%
rename(measurement = Diastolic_bp_pc) %>%
mutate(biomarker = "dbp")
<- totchol %>%
cholesterol select(f.eid,totchol,event_dt) %>%
rename(measurement = totchol) %>%
mutate(biomarker = "chol")
<- HDL %>%
hdl select(f.eid,HDL,event_dt) %>%
rename(measurement = HDL) %>%
mutate(biomarker = "hdl")
<- LDL %>%
ldl select(f.eid,LDL,event_dt) %>%
rename(measurement = LDL) %>%
mutate(biomarker = "ldl")
<- triglycerides %>%
trigly select(f.eid,triglyc,event_dt) %>%
rename(measurement = triglyc) %>%
mutate(biomarker = "trig")
<- fastgluc %>%
glu_fast select(f.eid,fastgluc,event_dt) %>%
rename(measurement = fastgluc) %>%
mutate(biomarker = "glucose_fast")
<- randgluc %>%
glu_rand select(f.eid,randgluc,event_dt) %>%
rename(measurement = randgluc) %>%
mutate(biomarker = "glucose_rand")
<- a1c %>%
hba1c select(f.eid,hba1c_mmol_mol,event_dt) %>%
rename(measurement = hba1c_mmol_mol) %>%
mutate(biomarker = "hba1c")
<- cleaned_bmi %>%
bmi select(f.eid,BMI,event_dt) %>%
rename(measurement = BMI) %>%
mutate(biomarker = "bmi")
<- blood_creatinine %>%
blood_creat select(f.eid,blood_creatinine,event_dt) %>%
rename(measurement = blood_creatinine) %>%
mutate(biomarker = "creat_blood")
<- ucreat %>%
urine_creat select(f.eid, ucreat_umol_L, event_dt) %>%
rename(measurement = ucreat_umol_L) %>%
mutate(biomarker = "creat_urine")
<- ualb %>%
urine_albumin select(f.eid, ualb_mg_L, event_dt) %>%
rename(measurement = ualb_mg_L) %>%
mutate(biomarker = "albumin_urine")
<- UACR %>%
uacr select(f.eid,UACR,event_dt) %>%
rename(measurement = UACR) %>%
mutate(biomarker = "uacr")
Combine all of biomarker trajectory datasets into a long format.
<- bind_rows(list(sbp,dbp,cholesterol,hdl,ldl,trigly,
biomarker_traj_tab_long
glu_fast,glu_rand,hba1c,bmi,blood_creat, urine_creat,urine_albumin,uacr))
Create macro/microalbuminuria event table.
<-
albuminuria_event_tab %>%
biomarker_traj_tab_long filter(biomarker == "uacr") %>%
mutate(macroalbuminuria = ifelse(measurement < 33.9,F,T),
microalbuminuria = ifelse(measurement < 3.4,F,T)) %>%
select(f.eid,event_dt,macroalbuminuria,microalbuminuria) %>%
pivot_longer(cols=c(macroalbuminuria,microalbuminuria),values_to = "event", names_to = "type") %>%
select(f.eid,event,event_dt,type)
Filter out the following from the biomarker trajectory table and albuminuria event table:
- any unknown measurements
- any measurements with unknown dates
<- biomarker_traj_tab_long[!is.na(biomarker_traj_tab_long$event_dt),]
biomarker_traj_tab_long <- biomarker_traj_tab_long[!is.na(biomarker_traj_tab_long$measurement),]
biomarker_traj_tab_long
<- albuminuria_event_tab[!is.na(albuminuria_event_tab$event_dt),] albuminuria_event_tab
Save the biomarker trajectory data and albuminuria event table extracted from the primary care data.
saveRDS(biomarker_traj_tab_long,"generated_data/biomarker_trajectory_pcp.RDS")
saveRDS(albuminuria_event_tab,"generated_data/albuminuria_event_tab_pcp.RDS")